Evacuation in tunnel

human behaviour, tunnel ventilation and more...

Norwegian Tunnel Safety Conference 2018

Dr Rune Brandt, HBI Haerter, Switzerland
Human behaviour – in case of fire in a tunnel

General

1. Rational
2. Assisting / helping
3. No panic
4. Behave as usual
5. Accept instructions from person of authority (police, emergency service, ...
Egress phases (control centre) and egress steps (user)

Phases according to **reactions in control centre**

a) Detection phase: time to detect incident
b) Alarm phase: time to evaluate proper response
c) Action phase: time to activate response
d) Egress phase: time to evacuate all users

Egress steps see from the **users perspective**

Caught behind fire

Leave car

Start egress

Identify and use emergency exits

Out of tunnel

Step 1

Realise incident

Step 2

Wait in or by car

Step 3

Move towards exit

Step 4

Exit tunnel

Egress time

Alternative strategy: turn car and drive out of tunnel
Human behaviour

<table>
<thead>
<tr>
<th>Position</th>
<th>Ideal behaviour</th>
<th>Condition</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Stop outside tunnel</td>
<td>No tunnel closure</td>
<td>~0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tunnel closure with barrier</td>
<td>~100%</td>
</tr>
<tr>
<td>B</td>
<td>Stop and evacuate by food</td>
<td>See smoke/fire</td>
<td>~10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See smoke/fire and radio/sign info</td>
<td>~50%</td>
</tr>
<tr>
<td>C</td>
<td>Evacuate by food</td>
<td>See smoke/fire</td>
<td>~40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See smoke/fire and radio/sign info</td>
<td>~50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directions by person of authority</td>
<td>~100%</td>
</tr>
<tr>
<td>D</td>
<td>Stop and evacuate by food</td>
<td>Captured in smoke</td>
<td>~30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Captured in smoke and radio/sign info</td>
<td>~40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directions by person of authority</td>
<td>~100%</td>
</tr>
<tr>
<td>E</td>
<td>Drive out</td>
<td>No instructions to do otherwise</td>
<td>~100%</td>
</tr>
</tbody>
</table>
Typically, several minutes (2/3 of the total available egress time) is wasted during this step without the user moving anywhere.

It is difficult for the user to differentiate a fire from a normal traffic incident e.g. congestion and standstill.

Users often need information from different sources to realise that it is a critical situation.

There are large individual differences on which type and amount of information that is required.

Short and easy understandable messages are beneficial.
Human behaviour

Step 2: Decision making and preparation of egress

- The fires' potential growth rate is underestimated
- Several minutes can be used to discuss the situation with other users
- Some users start to extinguish the fire; but these stop doing so and commence evacuation if they feel that they are in danger
- Evacuation in groups, which extends the egress time
- Only evacuation through smoke, if users are convinced that this will lead them to an emergency exit

Realise incident

Wait in or by car

Step 2

Move towards exit

Exit tunnel

Step 1

Step 2

Step 3

Step 4
Improvement of Steps 1 and 2: Information

SLASS – Synchronised Longitudinal Announcement Speaker system

Realise incident
Step 1

Wait in or by car
Step 2

Move towards exit
Step 3

Exit tunnel
Step 4
Improvement of Steps 1 and 2: Information

SLASS – Synchronised Longitudinal Announcement Speaker system

t₀ = Audio Signal (undelayed)

\[t₁ = t₀ + x \text{ milliseconds} \]
Improvement of control centre: detection and alarm phase

Reduce consequence by having a minimum tunnel ventilation at all times

Fire detection 600 sec @ 5MW and/or
Control centre/system reaction: 600sec

Always flow of ~1m/s in direction of traffic in unidirectional tunnels as mitigation measure for slow fire detection.

Fire detection 60 sec @ 5MW
Control centre / system reaction: 20sec
Reduction of sensitivity of speed of fire detection and reaction time by control centre

Improvement of control centre: detection and alarm phase
Reduce consequence by having a minimum tunnel ventilation at all times

rapid tunnel closure = minimise impact
Human behaviour

Step 3: move towards exit

- Tendency to **evacuate backwards from the way** that the user came from
- Tendency to **turn car** if **visibility** is **less than 10m**
- Users that have reached a safe haven are **prepared to re-enter the zone of danger**
- Egress speed 0.3m/s (no visibility) to 2m/s; mobility impaired down to 0.17m/s.
Bi-directional traffic

Snu og kør ut / turn car and drive out

- Assumption NordFou-project: 60 s to turn car
 Speed in smoke: 2 m/s = 7 km/t

- Alle cars could exit the tunnel without coming in a critical situation

- Problems:
 - Large vehicles cannot turn and hence blocks the passage for other cars
 - Collision with tunnel wall
 - Impact with user egressing by foot
Lights provides guidance and reduces risk of incidents

Guidance lights and illuminated egress signs

Step 1
Realise incident

Step 2
Wait in or by car

Step 3
Move towards exit

Step 4
Exit tunnel
Smoke management

Steps 1 to 3: how to gain time

- Smoke extraction
- Longitudinal ventilation (no cars/persons downstream)

Realise incident
Step 1
Wait in or by car
Step 2
Move towards exit
Step 3
Exit tunnel
Step 4
Smoke management when cars/persons on both sides of fire

Steps 1 to 3: how to gain time

- Smoke extraction, large distance between emergency exits

- Longitudinal ventilation, short distance between emergency exits and fixed fire fighting system

[Diagram showing step-by-step process with illustrations of vehicles and smoke]

Step 1: Realise incident

Step 2: Wait in or by car

Step 3: Move towards exit

Step 4: Exit tunnel
Tunnels with bi-directional traffic

Longitudinal ventilation: rapid activation and high speed is advantageous

- Short detection- and response time is important
- Ventilation reduces the effects
Smoke management in single-tube tunnel with bi-directional traffic

Which measures are efficient to minimise the potential fatalities?

Tunnels with one tube and bi-directional traffic:
- Often low equipment level
- Low traffic numbers
- Perhaps long
- Perhaps high longitudinal slopes
Smoke management in single-tube tunnel with bi-directional traffic

Longitudinal ventilation: equality, stratification and/or dilution?

Minimise speed of smoke spread, high CO concentrations: Japan

Reduce CO concentrations and retain favourable conditions for smoke stratification

Smoke spread only in one direction, smoke dilution: simple strategy
Human behaviour

Step 4: Exit tunnel

- Emergency egress are used, if the user have had positive experiences using emergency exits
Emergency exits

In case of ideal human behaviour a very efficient safety measure

- Optimal fire detection and response
- Late fire detection and late response

Fatalities

- **50m**
 - Optimal fire detection and response: 1
 - Late fire detection and late response: 5

- **150m**
 - Optimal fire detection and response: 2
 - Late fire detection and late response: 15

- **250m**
 - Optimal fire detection and response: 10
 - Late fire detection and late response: 25

Distance between emergency exits

Step 1

- **Realise incident**

Step 2

- **Wait in or by car**

Step 3

- **Move towards exit**

Step 4

- **Exit tunnel**
Egress doors

Visible egress doors (green with light around, easy to use (e.g. opening force > 100 N) also from a wheelchair

Step 1: Realise incident
Step 2: Wait in or by car
Step 3: Move towards exit
Step 4: Exit tunnel
Future technology

- Mobile phones
 - Detection
 - Information about congestion and traffic movements
 - Contact to users
- Alarm via eCall
- ITS, car to car and/or infrastructure communication
- IR Camera, radar detection
- Automated and autonomous cars

... and everything has to function as envisaged i.e. the minimal operation conditions need to be known

Evacuation in tunnel
human behaviour, tunnel ventilation and more...

Thank you – questions?