Evacuation in tunnel

human behaviour, tunnel ventilation and more...

Norwegian Tunnel Safety Conference 2018

Dr Rune Brandt, HBI Haerter, Switzerland

Human behaviour – in case of fire in a tunnel

General

- 1. Rational
- 2. Assisting / helping
- 3. No panic
- 4. Behave as usual
- 5. Accept instructions from person of authority (police, emergency service, ...

Egress phases (control centre) and egress steps (user)

Phases according to reactions in control centre

a) Detection phase: time to detect incident

b) Alarm phase: time to evaluate proper response

c) Action phase: time to at activate response

d) Egress phase: time to evacuate all users

Egress steps see from the users perspective

Position	Ideal behaviour	Condition	Likelihood
Α	Stop outside tunnel	No tunnel closure	~0%
		Tunnel closure with barrier	~100%
В	Stop and evacuate by food	See smoke/fire	~10%
		See smoke/fire and radio/sign info	~50%
С	Evacuate by food	See smoke/fire	~40%
		See smoke/fire and radio/sign info	~50%
		Directions by person of authority	~100%
D	Stop and evacuate by food	Captured in smoke	~30%

E

Drive out

Captured in smoke and radio/sign info

Directions by person of authority

No instructions to do otherwise

~40%

~100%

~100%

Human behaviour

Step 1: realise incident

- Typically, several minutes (2/3 of the total available egress time) is wasted during this step without the user moving anywhere
- It is difficult for the user to differentiate a fire from a normal traffic incident e.g. congestion and standstill
- Users often need information from different sources to realise that it is a critical situation
- There are large individual differences on which type and amount of information that is required
- Short and easy understandable messages are beneficial

Human behaviour

Step 2: Decision making and preparation of egress

- The fires potential growth rate is under estimated
- Several minutes can be used to discuss the situation with other users
- Some user start to extinguish the fire; but these stop doing so and commence evacuation if they feel that they are in danger
- Evacuation in groups, which extents the egress time
- Only evacuation through smoke, if users are convinced that this will lead them to an emergency exit

Improvement of Steps 1 and 2: Information

SLASS – Synchronised Longitudinal Announcement Speaker system

Improvement of Steps 1 and 2: Information

SLASS – Synchronised Longitudinal Announcement Speaker system

Improvement of control centre: detection and alarm phase

Reduce consequence by having a minimum tunnel ventilation at all times

Fire detection 600 sec @ 5MW and/or Control centre/system reaction: 600sec

Always flow of ~1m/s in direction of traffic in unidirectional tunnels as mitigation measure for slow fire detection.

Improvement of control centre: detection and alarm phase

Reduce consequence by having a minimum tunnel ventilation at all times

Reduction of sensitivity of speed of fire detection and reaction time by control centre

rapid tunnel closure = minimise impact

Human behaviour

Step 3: move towards exit

- Tendency to evacuate backwards from the way that the user came from
- Tendency to at turn car if visibility is less than 10m
- Users that have reached a safe haven are prepared to re-enter the zone of danger
- Egress speed 0.3m/s (no visibility) to 2m/s; mobility impaired down to 0.17m/s.

Bi-drectional traffic

Snu og køyr ut / turn car and drive out

- Assumption NordFou-project:
 60 s to turn car
 Speed in smoke : 2 m/s = 7 km/t
- Alle cars could exit the tunnel without coming in a critical situation
- Problems:
- Large vehicles cannot turn and hence blocks the passage for other cars
- Collision with tunnel wall
- Impact with user egressing by foot

Lights provides guidance and reduces risk of incidents

Guidance lights and illuminated egress signs

Smoke management

Steps 1 to 3: how to gain time

Longitudinal ventilation (no cars/persons downstream)

Smoke management when cars/persons on both sides of fire

Steps 1 to 3: how to gain time

Smoke extraction, large distance between emergency exits

Longitudinal ventilation, short distance between emergency exits and fixed fire fighting system

Step 4

Tunnels with bi-directional trafic

Longitudinal ventilation: rapid activation and high speed is advantageous

- Short detection- and response time is important
- Ventilation reduces the effects

Smoke management in single-tube tunnel with bi-directional traffic

Which measures are efficient to minimise the potential fatalities?

Smoke management in single-tube tunnel with bi-directional traffic

Longitudinal ventilation: equality, stratification and/or dilution?

Minimise speed of smoke spread, high CO concentrations: Japan

Reduce CO concentrations and retain favourable conditions for smoke stratification

Smoke spread only in one direction, smoke dilution: simple strategy

Human behaviour

Step 4: Exit tunnel

 Emergency egress are used, if the user have had positive experiences using emergency exits

Emergency exits

In case of ideal human behaviour a very efficient safety measure

Egrees doors

Visible egress doors (green with light around, easy so use (e.g. opening force > 100 N) also from a wheelchair

Future technology

- Mobile phones
 - » Detection
 - » Information about congestion and traffic movements
 - » Contact to users

- Alarm via eCall
- ITS, car to car and/or infrastructure communication
- IR Camera, radar detection
- Automated and autonomous cars
- ... and everything has to function as envisaged i.e. the minimal operation conditions need to be known

Evacuation in tunnel human behaviour, tunnel ventilation and more...

□ Thank you – questions?

