Through our international collaboration programmes with academia, industry, and the public sector, we ensure the competitiveness of the Swedish business community on an international level and contribute to a sustainable society. Our 2,800 employees support and promote all manner of innovative processes, and our roughly 100 testbeds and demonstration facilities are instrumental in developing the future-proofing of products, technologies, and services. We are owned by the Swedish State and work in collaboration with and on behalf of the private and public sectors and academia. Together, we develop services, products, technologies, processes and materials that contribute to a sustainable future and a competitive Swedish business community.

ISTSS 2020 in Munich, Germany.
ABSTRACT

This report includes the Proceedings of the 9th International Symposium on Tunnel Safety and Security (ISTSS) held in München, Germany, 11-13th of March, 2020. The Proceedings include 42 papers given by session speakers and 13 extended abstracts presenting posters exhibited at the Symposium. The papers were presented in 12 different sessions. Among them are Keynote sessions, Tunnel Safety Concepts, Fire Dynamics, Risk Analysis 1&2, Tunnel Safety Design Concepts, Poster Corner, Explosion Hazards, Active Protection 1&2, Emergency Management, Ventilation, Passive Protection and Evacuation.

Each day was opened by invited Keynote Speakers (in total six) addressing broad topics of pressing interest. The Keynote Speakers, selected as leaders in their field, consisted of Anne Lehan, German Highway Research Institute, Germany, Marc Tesson, Centre for Tunnel Studies (CETU), France, Trond H. Hansen, Oslo Fire and Rescue Service, Norway, Mia Kumm, RISE, Sweden, Roland Leucker, Research Association for Tunnels and Transportation Facilities (STUVA), Germany and Rune Brandt, HI Haerter, Switzerland. We are grateful that the keynote speakers were able to share their knowledge and expertise with the participants of the symposium.

RISE Research Institutes of Sweden AB
RISE Rapport 2020:09
Borås
PREFACE

These proceedings include papers presented at the 9th International Symposium on Tunnel Safety and Security (ISTSS) held in München, 11-13th of March 2020. The symposium is well established in the tunnel fire community and the success of ISTSS is a tribute to the pressing need for continued international research and dialogue on these issues. These proceedings provide a state-of-the-art knowledge in the field of fire safety and security in underground structures.

This ISTSS regularly attracts over 150 delegates from all parts of the world and represents an arena for researchers to discuss safety and security issues associated with complex underground transportation systems. We see that new energy carriers (vehicles with new type of propellant) protection has become a major field of interest. The explosion of the CNG bus in Stockholm 2019 and the car park fire in Stavanger 2020 are examples of the challenges of the future. Inside an underground construction these incidents would have much higher potential for damage. The new energy carriages will in near future become one of the most important research fields. Furthermore, risk and engineering analysis continues to be an area that attracts many papers. This year there is also a specific focus on best practice engineering and research. Numerous renowned researchers and engineers have contributed to these and other topics at this symposium for which we are very thankful. The enormous costs for underground structures forces engineers to design alternative solutions. The sessions that have greatest focus on mitigation of fire development include those dealing with the effects of ventilation systems, active and passive fire protection, firefighting and human behaviour.

We received nearly 70 extended abstracts in response to our Call for Papers (not including our six invited Keynote Speakers) and believe that the quality of the accepted papers is a testament to the calibre of research that is on-going around the world. Of these, 49 abstracts were selected, based on their high scientific quality, for paper presentations. The poster session contains 13 posters to canvas interesting emerging research. During the symposium there is also an exhibit where businesses present their work.

The selection process was carried out by the 15 members of the Scientific Committee. The Scientific Committee consists of many of the most well-known researchers in this field (a list can be found on the Symposium website, www.istss.se). We are grateful for their contribution to make this symposium as the leading one on fire and safety science in tunnels. Ten of the 2018 symposium papers were selected to candidate as full journal papers in Fire Safety Journal. A special issue has been published related to the ISTSS 2018 which finally included eight accepted papers. These papers were peer reviewed and selected by members of the scientific committee together with the editors of Fire Safety Journal. It is our hope that this process will continue in the future in order to raise the level of the scientific part of the symposium.

Finally, we would like to thank the other members of our organisation committee: Jonatan Gehandler, who is program co-ordinator, Kaisa Kaukoranta, symposium co-ordinator, Dr Ying Zhen Li, scientific co-ordinator and Linnéa Hemmarö, marketing co-ordinator. We also would like to thank our sponsors who contributed with their support and engagement.

Haukur Ingason
Chair of Organisation Committee

Anders Lönnermark
Chair of Scientific Committee
TABLE OF CONTENTS

KEYNOTE SPEAKERS

Influence of digital transformation on the interaction between tunnel infrastructure and road user - opportunities and risks
Anne Lehan
BAST Federal Highway Research Institute, Bergisch Gladbach, Germany

Future Challenges for road tunnel safety and security
Marc Tesson
Centre for tunnel studies (CETU), Bron, France

Innovation and new technologies as tactic resources during fire and rescue operations in tunnels – a threat or a possibility
Mia Kumm
RISE Research Institutes of Sweden, Västerås, Sweden

Underground Fire Safety in Germany
Roland Leucker
STUVA Research Association for Tunnels and Transportation Facilities, Cologne, Germany

Proposed best practice for the engineering of smoke-management systems in tunnels and other underground facilities
Rune Brandt
HBI Haerter, Zürich, Switzerland

TUNNEL SAFETY CONCEPTS

A comparison of safety risk acceptance principles for UK tunnels
Mike Deevy, Gabor Posta & Adam Ross
Arup, London, UK

Building Safety Management Systems dedicated to safe road tunnel operation
Hélène Mongeot & Marc Tesson
Centre for Tunnel Studies (Centre d’Etudes des Tunnels, CETU), Bron Cedex, France

Common life-safety targets in traffic tunnels
Bo Wahlström1, Göran Davidsson2, Oskar Jansson3, Johan Häggström4, Henric Modig4, Per Andersson2 & Karin Edvardsson5
1Brandskyddslaget AB
2COWI Sverige AB
3RiskTec Projektledning AB
4Swedish Transport Administration
5Swedish Transport Agency

Allow for the Unanticipated: A Key Element of Tunnel Safety Decision-Making
Alan N. Beard
Civil Engineering Section, EGIS School, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
FIRE DYNAMICS

Railcar Design Fire Determination – Testing and CFD Modelling
Matthew Bilson & Xinhe Liu
WSP USA, New York, USA

Experimental study of backlayering length and critical velocity in longitudinally ventilated tunnel fire with wide-shallow cross-section
Tianhang Zhang¹, Ganyu Wang¹, Kaijie Wu¹, Yadong Huang², Kai Zhu¹ & Ke Wu¹
¹Zhejiang University, Hangzhou, Zhejiang, China
²Zhejiang General Fire and Rescue Brigade, Hangzhou, Zhejiang, China

Tests of spilled liquid fires in a tunnel drainage system
Haukur Ingason, Ying Zhen Li, & Lei Jiang
RISE Research Institutes of Sweden, Borås, Sweden

Integration of a 1D model with FDS for multiscale analysis of tunnels
Jesus Mejias, Elisa Guelpa & Vittorio Verda
Politecnico di Torino, Torino, Italy

RISK ANALYSIS 1

Quantitative risk assessment of a Fixed- Fire-Fighting-System in the rescue station of the Semmering Base Tunnel
Oliver Heger¹, Florian Diernhofer¹, Verena Langner² & Thomas Thaller³
¹ILF Consulting Engineers Austria GmbH, Linz, Austria
²Gruner GmbH, Vienna, Austria
³OEBB-Infrastruktur AG, Graz, Austria

New energy carriers and additional risks for user’s safety in tunnels
Christophe Willmann¹ & Benjamin Truchot²
¹CETU, Bron cedex, France
²INERIS, Paris, France

Vulnerability- and resiliency analysis for urban metro systems – methods and approaches of structurized assessments
Goetz Vollmann¹, Christophe Willmann², Christian Thienert³, Jean-Baptiste Bevillard⁴ & Alexander Dahl⁵
¹Ruhr University Bochum, Bochum, Germany
²Centre d’études des tunnels, Bron cedex, France
³STUVA, Cologne, Germany
⁴Arcadis ESG, Villeurbanne Cedex, France
⁵PTV AG, Berlin, Germany
TUNNEL SAFETY DESIGN CONCEPTS

Fire Safety for the Seattle SR99 Highway Tunnel – The Owner’s Perspective
Iain Bowman1 & Susan Everett2
1Mott MacDonald, Vancouver, BC, Canada
2Washington State Department of Transportation, Seattle, WA, USA

Multi-Train Ventilation Section Quantitative Risk Assessment in Underground Rail Systems
Peter Woodburn & Adam Ross
ARUP, London, UK

An Approach for Defining Minimum Operating Requirements for Incident Management of Road Tunnels in Germany
Harald Kammerer1, Michael Barth2, Ulrich Bergerhausen3 & Selcuk Nisancioglu1
1ILF Consulting Engineers Austria, Linz, Austria
2ILF Consulting Engineers Germany, Munich, Germany
3Federal Highway Research Institute, Bergisch Gladbach, Germany

EXPLOSION HAZARDS

Explosions in road tunnels - Part 2: A quantitative risk analysis
Mirjam Nelisse & Ton Vrouwenvelder
TNO Netherlands Organisation for Applied Scientific Research, Delft, The Netherlands

Local fire tests of CNG vehicle containers
Jonatan Gehandler & Anders Lönnermark
RISE Research Institutes of Sweden, Borås, Sweden

RISK ANALYSIS 2

Uncertainties related to fire smoke toxicity in tunnels
Lene Østrem1 & Ove Njå2
1Gassco, Kopervik, Norway
2University of Stavanger, Stavanger, Norway

Dangerous goods vehicles in road tunnels, a significant modification of French risk analysis
Christophe Willmann & Michel Deffayet
CETU (tunnel study centre), Lyon, France
Modelling fire occurrences in heavy goods vehicles in road tunnels
Ådne Njå¹, Jan Terje Kvaløy¹ & Ove Njå²
¹Department of Mathematics and Physics, University of Stavanger, Stavanger, Norway
²Department of Safety, Economics and Planning, University of Stavanger, Stavanger, Norway

Transmutation of the most important Underground Rail Infrastructure in Belgium – Brussels North South Link - from post World War II into the 21th Century
Lieven Schoonbaert, Stefaan Vernieuwe & Stijn Eeckhaut
INFRABEL – The Belgian railway infrastructure manager, Brussels, Belgium

ACTIVE PROTECTION 1

Full scale experimental study on the performance of fire detection systems for underwater tunnel
Xin Han, Shaohua Sun, and Beihua Cong
Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai, China

Numerical modelling of a line type heat detection system in tunnel fires
Ying Zhen Li, Lei Jiang, & Haukur Ingason
RISE Research Institutes of Sweden, Borås, Sweden

Fire & Water Mist vs. Longitudinal Ventilation in Tunnels
Jamie Crum & Ricky Carvel
School of Engineering, University of Edinburgh, UK

How electric vehicles change the fire safety design in underground structures
Marie Kutschenreuter¹, Stephan Klüh¹, Max Lakkonen², Rajko Rothe² & Frank Leismann³
¹FOGTEC Brandschutz GmbH, Cologne, Germany
²IFAB Institute for Applied Fire Safety Research, Berlin, Germany
³STUVA e.V., Cologne, Germany

EMERGENCY MANAGEMENT

Recommendations for firefighters lifts in underground stations
Daniel Hahne¹ & Stefan Rehm²
¹Research Association for Tunnels and Transport Facilities (STUVAtec), Cologne, Germany
²Munich Fire Brigade, preventive fire safety department, Munich, Germany

Breathing air consumption in the fire tests at the Tistbrottet mine
Anders Palm¹,², Mia Kumm²,³, Artur Storm¹,⁴ & Anders Lönnemark⁵
¹Greater Stockholm Fire Brigade, Stockholm, Sweden
²Mälardalen University, Västerås, Sweden
³RISE Research Institutes of Sweden, Borås, Sweden
⁴Division of Structural and Fire Engineering, Luleå University of Technology, Luleå, Sweden
Optimising tunnel design using physiological impact on firefighters as a metric

Peter Woodburn & Danielle Antonellis
Arap, London, UK

Improving Effectiveness of Tunnel Incident Management

Gary English
Underground Command and Safety, Vashon, WA, USA

VENTILATION

Ventilation control in complex tunnels – results from system tests

Johannes Rodler¹, Peter Sturm², Gregor Schmoelzer¹, Patrik Foessleitner¹, Michael Bacher² & Daniel Fruhwirt²
¹FVT mbH, Graz, Austria
²Graz University of Technology, Austria

Metro Station Modernisation – Using Flow Measurements and CFD Simulation as a New Approach to Flow Analysis

Martin Schöll & Reinhard Gertl
ILF Consulting Engineers Austria GmbH, Rum bei Innsbruck, Austria

Ventilation during a fire incident in a road tunnel with contra-flow traffic

Daniel Feest & Hing-Wai Wong
WSP, Guildford, Surrey, England

ACTIVE PROTECTION 2

Experimental Study on Smoke Confinement by Water Spray in Tunnel Fire

Beihua Cong & Xin Han
Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai, China

Fire detection in railway tunnels - Full scale fire tests

Igor Maevski, Jeffrey Bott, Andre Calado, Raymond Klein, David Hahn, Robert Faddoul, Jackie Chen, & Kevin Ficarra
Jacobs Engineering, New York, USA

Fire tests with a line type heat detection system in the Runehamar tunnel

Ying Zhen Li¹ & Xinmin Du²
¹RISE Research Institutes of Sweden, Borås, Sweden
²Bandweaver Technologies Co., Ltd., Shanghai, China
Energy and Safety Diagnostic in Underground Facilities

Madeleine Martinsen, Erik Dalhqvist, Anders Lönnermark, & Örjan Säker

1,2 Mälardalens University, Västerås, Sweden
3 Research Institutes of Sweden, Borås, Sweden
4 Roctec Automation Epiroc Rock Drills AB, Örebro, Sweden

Model scale tests with automatic sprinkler in a tunnel

Haukur Ingason, Ying Zhen Li, Magnus Arvidson, & Lei Jiang
RISE Research Institutes of Sweden, Borås, Sweden

PASSIVE PROTECTION

Experimental investigation of a cement-free shotcrete in case of fire: Spalling tendency, thermal and mechanical properties

Anna-Lena Hammer, Götz Vollmann, Eugen Kleen, Dirk Uhlmann, Thorsten Weiner, Joachim Budnik, Thomas Rengshausen, & Christian Thienert

1 Ruhr University Bochum, Bochum, Germany
2 MC Bauchemie, Bottrop, Germany
3 PORR Deutschland GmbH, BU3-International, Düsseldorf, Germany
4 STUVA, Cologne, Germany

Assessment and upgrade of the fire resistance of the Waterwolf tunnel

Leander Noordijk, Albert Kandelaar, Coen van der Vliet, Ronald Heijmans, & Bart Duijvestijn

1 Arcadis Nederland BV
2 Province of Noord Holland

EVACUATION

Escalators for evacuation: Design and verification

Karl Fridolf, Andrew Purchase, Göran Nygren, Sofia Lundegårdh, & Matthew Bilson

1 WSP Fire & Risk, Sweden
2 WSP New York, USA

Ascending evacuation in an inclined tunnel

Artur Storm, & Eva-Sara Celander

1 RISE Research Institutes of Sweden, Borås, Sweden
2 Division of Fire Safety Engineering, Lund University, Lund, Sweden

Elevator evacuation and human behaviour – A literature review, design method and a case study

Axel Mossberg, Daniel Nilsson, & Håkan Frantzich

1 Division of Fire Safety Engineering, Lund University, Lund, Sweden
2 Brandskyddslaget, Stockholm, Sweden
3 Department of Civil and Natural Resources Engineering, University of Canterbury, New Zealand
POSTERS

Digitalized FBG fire detection in road tunnel

Xinmin Du¹, Guang Zhang², Ying Zhen Li² & Hao Zhao¹
¹Bandweaver Technology Co. Ltd., Shanghai, China
²Shanghai Space Appliance Co., Ltd., Shanghai, China
³RISE Research Institutes of Sweden, Borås, Sweden

Current status of international tunnel standards and guidelines for water-based Fixed Fire Fighting Systems

Tim Usner & Armin Feltmann
FOGTEC GmbH & Co. KG, Cologne, Germany

Air velocities in tunnels-a combination of simple hand calculations

Niclas Åhnberg, Hans Nyman & Robert McNamee
Brandskyddslaget, Stockholm, Sweden

Evacuation experiments in an urban road tunnel with large open shafts

Yuxin Zhang¹,²,³, Ricky Carvel¹, Zhiguo Yan²,³, Hehua Zhu²,³
¹University of Edinburgh, School of Engineering, Edinburgh, UK
²State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University
³Department of Geotechnical Engineering, Tongji University, Shanghai, China

Natural ventilation smoke management experiments in an urban road tunnel with large open shafts

Yuxin Zhang¹,²,³, Ricky Carvel¹, Zhiguo Yan²,³, Hehua Zhu²,³
¹University of Edinburgh, School of Engineering, Edinburgh, UK
²State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University
³Department of Geotechnical Engineering, Tongji University, Shanghai, China

Construction of INA Line-7 Metro Station Over Operational Twin Metro Tunnels of Line-3 of DMRC

Saurabh Sharma, Ashwani Kumar & Virender Sattawan
Delhi Metro Rail Corporation Limited, New Delhi, India

3D-CFD Simulations of pool-fires, comparison with experimental data

Daniel Fruhwirt & Peter Sturm
Graz University of Technology, Institute of Internal Combustion Engines and Thermodynamics, Research Area – Traffic & Environment, Graz, Austria

Performance-Based Structural Fire Engineering of Tunnels

Aaron Akotuah¹, Andrew Coles¹, Darlene Rini³ & Kevin Mueller²
¹Jensen Hughes
²Thornton Tomasetti

Theoretical analysis and numerical study on air and smoke flow characteristics under traffic blockage in highway tunnels

Jing Wu¹ & Feimin Shen²
¹Fujian University of Technology, Fujian, China
²Fuzhou University, Fuzhou, Fujian, China
U-Threat project - resilience of underground transport – Evacuation of users from a metro train on fire in a tunnel

Christophe Willmann¹, Nikolaos Voagiokas², Christophe Chaise³, Peter Hoffman⁴ & Julia Nass⁵

¹CETU, Bron cedex, France
²ENALOS
³KEOLIS LYON
⁴RUB UNIVERSITY
⁵STUVA

Renewable fuels during underground work – low risk, obvious benefit but nevertheless a utopia?

Jonatan Gehandler

RISE Research Institutes of Sweden, Borås, Sweden

Aesthetic design in E4 The Stockholm bypass tunnels – The process of creating a safe, inviting and non-monotonous driving experience

Henric Modig¹ & Anders Lindgren Walter²

¹Swedish Transport Administration, Sundbyberg, Sweden
²MTO Säkerhet AB, Stockholm, Sweden

Optimal Spacing of Jet Fan in Extra-long tunnel fire under a Longitudinal Ventilation System

Imad Obadi, Miaocheng Weng & Fang Liu

Faculty of Civil Engineering, Chongqing University, Chongqing, PR China
Proposed best practice for the engineering of smoke-management systems in tunnels and other underground facilities

Rune Brandt
HBI Haerter, Bahnhaldestrasse 7, 8052 Zürich, Switzerland, www.hbi.ch

ABSTRACT

The paper proposes a new best practise for smoke management as part of safety engineering in tunnels and underground facilities. Particular requirements on passive measures such as platform-screen doors and anti-recirculation walls are also described. The main focus is on active smoke management using ventilation systems. The paper proposes that the dimensioning is to be carried out according to six main cases, applying a main and a minor design criterion. When only considering the smoke-management system and no other mitigation measures, this dimensioning corresponds to the minimum operation requirement. Closed-loop control of the longitudinal flow is a challenge, in particular due to the difficulty of obtaining adequately accurate measurements of the flow. The review of fire detection systems results in a proposal of properly specified linear heat detectors. In addition, smoke detectors using a novel data analysis technique can be beneficial. It is advocated that smoke-management systems shall be operated fully automatic. However, manual operator intervention shall be possible.

KEYWORD: smoke management, tunnel ventilation, active control, RAMS, automatic operation

INTRODUCTION

The focus of this paper is to convey a personal view on smoke management as a mitigation measure in safety engineering. In simple terms, the objective is to keep smoke and the associated toxic gasses of a fire away from the users so that they may egress safely.

As the occurrence and development of a fire is unknown, the fire detection and the reaction by the smoke-management system needs to be fast i.e. enabling an adequately safe environment within few minutes after the onset of the fire.

ON CERTAIN PASSIVE MEASURES FOR SMOKE MANAGEMENT

Introduction

Due to their reliability, passive measures are obviously favoured. The smoke propagation is limited to certain zones i.e. by establishing fire zones separated e.g. by self-closing fire doors.

Platform-screen doors (PSD)

Platform-screen doors or platform-edge doors need to establish a complete separation between the track and the platform, in order to be deemed efficient from a smoke-management point of view. Consequently, the openings of the PSD need to be aligned with the train doors. Due to this, the rail
system therefore has to be operated with purpose-built rolling stock.

Anti-recirculation walls at tunnel portals

In many safety concepts, a parallel tunnel tube is intended to function as safe haven. Logically, this escape tunnel then has to be kept smoke free, in case of fire in the adjacent incident tube. The egress routes between the two tubes are kept smoke free by establishing an air lock i.e. having two doors.

Smoke can, however, exit through the portal of the incident tunnel and re-enter the non-incident tunnel through its portal, see *Figure 1*.

![Flow](image1)

Figure 1
Principle of recirculation from exit portal (outflow) to entrance portal (inflow)

Such smoke recirculation can be adequately hindered by having an anti-recirculation wall between the two tunnel tubes. Based on [2] to [6], the Swiss guideline regarding road-tunnel ventilation [1] concluded that one of the following measures against recirculation are to be foreseen, depending on the location of the entrance and exit portals in relation to one another, see *Figure 2*.

![Flow](image2)

Figure 2
“Trennwand” = separation wall. Measures to minimise smoke recirculation at portals of road tunnels according to FEDRO/ASTRA [1]. Figure from [1].

The deduced requirements to the separation wall between the tunnel tubes are valid when:

- the two tunnel tubes are close to each other,
- the tunnels are not in a trough and
- there is not an elevation behind the tunnel portal

A more refined empirical model that incorporates the requirements above, through influence factors, has been developed by Brandt [7].
VENTILATION PRINCIPLES FOR SMOKE MANAGEMENT

Ventilation principles

Two distinct principles are applied for smoke-management:

1) Longitudinal ventilation, which can be subdivided depending on the ventilation objectives (see Figure 3):
 a) Zero-velocity at the positions of the fire with the aim to benefit from adequately slow smoke propagation velocity in all directions so that the people can egress under the developing layer
 b) Some back-layering of smoke upstream controlled by the so-called confinement velocity (u_{conf}) and faster smoke propagation downstream
 c) Smoke propagation only downstream by ensuring at least the critical velocity (u_{crit}) just upstream the fire i.e. blowing the smoke away from the intended egress area to give tenable conditions on one side of the fire and allow smoke only on the other

2) Smoke extraction i.e. removing the smoke to provide tenable conditions in the space of interest. In order to ensure an efficient smoke-extraction, it can be argued that the flow velocities towards the extraction point should as a minimum be equal to the confinement velocity.

Figure 3 Longitudinal ventilation objectives

Typical design values

In practise, it appears that a minimum velocity (u_{min}) of 0.5 m/s is required in order to move even cold smoke. The value of the critical velocity has been subject of several studies, and one of the most recent proposals to calculate this can be found in NFPA502 [19]. For a 30 MW fire in a road tunnel, a typical value of u_{crit} is 2.4 m/s. The value of u_{conf} is somewhat more difficult to determine, but a typical value is 1.2 m/s.
The design velocities have to include a margin for ventilation control and therefore need to be higher than the theoretical ones derived for steady state. Without such margin, the flow is unlikely to achieve the design value. Consequently, it is proposed to increase the design velocity by 25%.

Early designs required the smoke-extraction rate to be 150% of the smoke-production rate i.e. about 120 m³/s for a 30 MW fire. From a smoke-management perspective, the smoke-extraction rate also needs to be at least u_{conf} multiplied with the cross section areas on each side of the smoke-extraction point. Assuming that the cross sections on each side of the extraction point are equal, this results in the following volume flow calculation: $V = 2 \times u_{conf} \times (\text{tunnel cross section area})$. The highest of the two values, smoke-management vs. smoke-extraction, has to be used in the design.

Design philosophy

It is proposed to adopt two design criteria:
- **Main design criteria** covering all typical worst cases but not extreme scenarios
- **Minor design criteria** also for the typical worst case but having one extreme design parameter

Ambient conditions and further external forces

Forces arising from ambient conditions (external winds and temperatures) have to be considered in the design. The 95%-percentile of long-time hourly mean values of ambient conditions should be assumed for the main design criteria, whereas the 99.9%-percentile should be applied as extreme design parameters when using the minor design criteria.

Other system forces that might occur e.g. due to operation of other equipment should in addition be considered in the design.

Design fires

In order to determine the design fire, typically a credible worst-case scenario is assumed. In several countries, national guidelines prescribe the maximum heat-release rate to use for dimensioning, i.e one mega-watt number. However, particularly in rail applications, a fire scenario is used, in which the fire develops over time (mega-watt curve) to reach the maximum heat-release rate.

In addition to the credible worst-case scenario, an extreme design fire shall be determined. For the design criteria, this then corresponds to one extreme design parameter.

Fixed fire-fighting system (FFFS)

Fixed fire-fighting systems (FFFS) efficiently reduce the development of a fire. However, rapid activation is crucial for a FFFS to provide any benefit in safety engineering. Assuming that the FFFS is adequately designed and activated within, say, 2 minutes of the onset of the fire, the question remains to assess its impact on the fire in terms of e.g. resulting heat-release rate. The FFFS would be expected to almost extinguish open fires but will have limited impact on concealed fires. Reviewing the fire experiments conducted with FFFS, it seems a good design assumption that the FFFS will reduce the potential maximum heat-release rate to half. This means that a design fire of e.g. 100 MW without FFFS can be reduced to 50 MW with FFFS.
Applied fire-scenarios for the design

The design needs to cater for situations during which associated key systems fail that have direct impact on the functionality and/or the efficiency of the smoke-management system. One such system is the FFFS.

It is proposed to dimension the smoke-management system according to following design fires:
- Maximum heat-release rate of the Design Fire with FFFS
- Maximum heat-release rate of the Design Fire without FFFS
- Cold fire with the same smoke-production rate as the hot Design Fire

CONTROL OF THE LONGITUDINAL FLOW

Introduction

In many cases, the smoke-management system envisages to control the longitudinal flow so that its velocity is contained within a certain range.

For longitudinal ventilation systems, the objective of the control is to obtain and keep the velocity within a certain range. One objective can be to keep the velocity adequately low to enable egress by foot on both sides of the fire. Also, if the objective is to prevent backlayering and ensuring at least the critical velocity, it can be desirable to restrain the air flow and hence the fire development.

Regarding smoke-extraction systems, the objective is to limit the smoke spread to the extraction zone. However, external forces and/or the chimney effect by the fire can cause the flow to spread beyond the extraction zone, as was the case during the Mont-Blanc fire in 1999. At high smoke-extraction rates, the requirement for control of the longitudinal flow is reduced.

In a research project for the Swiss road authorities, all principles for influencing the longitudinal flow in road tunnels were investigated [9, 10].

Passive measures

The passive measures aim at reducing the required air flow capacity.

A typical passive measure is to block the airway e.g. by closing purpose-built doors. This measure is used in rail and metro systems, where blocking the underground facility do not impede the egress and the intervention by the emergency services.

In road tunnels, however, egress and intervention normally require keeping the tunnel open to traffic. In the Roppener tunnel (Austria), a curtain is lowered in case of fire to reduce the longitudinal flow. This is designed in such a manner that vehicles can drive through it, see Figure 4. References [13] and [14] report on fluid-dynamic investigations of similar curtains.

Installing a large balloon that fills with air in case of fire and incorporates an airlock to enable passing through it, has also been proposed as an innovative measure to block the air flow.
Figure 4 Flexible curtain that is lowered in case of fire in the Roppener tunnel, Austria

Air curtains appear to be the viable alternative to genuine curtains. The principle is to inject flow at a high velocity and at a large angle (almost perpendicular) from one side so that it impinges on the opposite side, see Figure 5. However, it should be noted that it can only resist a certain pressure, above which it completely ceases to resist the longitudinal flow. Another issue is that it by design can only oppose a pressure difference in one direction. Although often used in HVAC systems, air curtains are therefore less common for tunnel applications.

Figure 5 Air curtain without (left) and with (right) recirculating flow

Active Measures

In metro systems, the classical push-pull principle involves flow injection at one position and/or extraction at another to create a longitudinal flow. This method has also been used in road tunnels e.g. Seelisberg (Switzerland) and Saukopf-tunnel (Germany) [8].

In 1898, Saccardo patented the principle of injecting flow at a low, almost horizontal, angle to cause a longitudinal flow [11]. In the following year, this design principle was used for the Gotthard rail tunnel [12]. The drawback of the Saccardo nozzle is that it only functions in one direction at a fixed
A refined utilisation of the Saccardo principle is to use fresh-air impulse dampers. Here, the injection angle can be varied so that injection is possible in both directions [15], see Figure 6. This is an often-seen solution for refurbishment of road tunnels with fresh-air ducts.

![Figure 6](image_url)
Figure 6 CFD computation of a fresh-air impulse damper for two utilisations

The most common method, however, for influencing the longitudinal flow in road tunnels is the utilisation of jet fans. The advantage of jet fans is that they maintain having an impact on the longitudinal flow irrespectively of the direction of the flow to control.

Closed-loop control of the longitudinal flow

The principle of the closed-loop control is to measure the longitudinal flow and to adjust the ventilation capacity until the desired velocity is reached.

In order to ensure that the smoke was extracted entirely within the extraction zone, the bi-directional road tunnel Vue-des-Alpes [16] was the first tunnel to use closed-loop control of the longitudinal flow in case of fire. Based on these experiences, a closed loop control was applied to the refurbishment of the Mont Blanc tunnel [17].

The reason why active closed loop control has not been attempted earlier, is the realization that it is a challenge to obtain adequately accurate measurements of the volume flow in the tunnel. Vane anemometers and pitot tubes can merely measure velocities in a single point, but for this purpose the average velocity in the entire tunnel cross section is required. Considering that the tunnel can only have measurements devices situated near its wall, to not obstruct traffic, one viable measurement principle that gives adequately reliable values is based on measuring across the traffic space, using the ultra-sonic principle, see Figure 7.

![Figure 7](image_url)
Figure 7 Measurement across the traffic space using the ultra-sonic principle

Regarding the assessment of various measurements methods of the air flow in tunnels, the conclusions from the research project [18] on the matter is misleading, as it was based on measurements in tunnels operated with traffic. The piston effect of the driving vehicles mixes the flow field to such an extent that the entire flow field in a cross section has similar velocities. For the purpose of active control during a fire, the situation is different, as there should be no operating traffic and the flow field in a cross section is therefore very different and with large variations in velocities.

Even with the best possible anemometer for the measurements of the average velocities in a cross section, it has to be ensured that the measurements are plausible. Attempting to control the
longitudinal flow based on inaccurate measurements can have devastating consequences. Consequently, a plausibility test of the measurements has to be carried out. The typical configuration for this purpose is to place three anemometers close to each other and to compare the three measurements using logical rules.

![Figure 7](Image)

Figure 7 Principle of ultra-sonic flow measurements by measuring across the tunnel section. *Illustration from FLOWSIC200 operation instructions, release 2016-17*

Whereas the control routine for the Vue-des-Alpes was directly based on the equations describing the physics of the flow field, most routines nowadays are based on using standard PID libraries. This is in line with the conclusions of the in-depth research of various feed-back control principles that was carried out for the Swiss Federal Roads Office [22]. The practical use of PID and the determination of the control parameters is described in [21]. Active feed-back control is also prescribed for the E4 Bypass Stockholm, which is one of the largest and most complex road tunnel-networks under construction [20].
DIMENSIONING

Two dimensioning of the smoke-management system have to be carried out:
- **Main Dimensioning** applying the **Main Design Criteria** and covering all **Typical Worst Cases** but not extreme scenarios
- **Minor Dimensioning** applying the **Minor Design Criteria** for the **Typical Worst Case** design situation and **One Extreme Design Parameter**

Moreover, the dimensioning needs to be carried for cases that key systems, which have a direct influence on the dimensioning, do not function. One such system is the fixed fire-fighting system, as failure leads to larger design fires than expected. If the likelihood of such system failures is as low as for the occurrence of one of the **Extreme Design Parameters**, it is proposed to conduct the dimensioning applying the **Minor Design Criteria** but applying the design fire without application of the FFFS.

The resulting dimensioning corresponds to the maximum of these six cases, see Table 1. It should be noted that there are several sub-cases of 3 and 4, as the result for each of the **Extreme Parameters** has to be evaluated.

<table>
<thead>
<tr>
<th>Case</th>
<th>Dimensioning</th>
<th>Criteria</th>
<th>Scenario</th>
<th>Design Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main</td>
<td>Main Design Criteria</td>
<td>Typical Worst Case</td>
<td>Maximum heat-release rate with FFFS Cold fire</td>
</tr>
<tr>
<td>2</td>
<td>Main</td>
<td>Main Design Criteria</td>
<td>Typical Worst Case</td>
<td>Cold fire</td>
</tr>
<tr>
<td>3</td>
<td>Minor</td>
<td>Minor Design Criteria</td>
<td>Typical Worst Case and One Extreme Parameter</td>
<td>Maximum heat-release rate with FFFS Cold fire</td>
</tr>
<tr>
<td>4</td>
<td>Minor</td>
<td>Minor Design Criteria</td>
<td>Typical Worst Case and One Extreme Parameter</td>
<td>Maximum heat-release rate with FFFS Cold fire</td>
</tr>
<tr>
<td>5</td>
<td>Minor</td>
<td>Minor Design Criteria</td>
<td>Typical Worst Case and One Extreme Parameter</td>
<td>Maximum heat-release rate without FFFS Cold fire</td>
</tr>
<tr>
<td>6</td>
<td>Minor</td>
<td>Minor Design Criteria</td>
<td>Typical Worst Case and One Extreme Parameter</td>
<td>Maximum heat-release rate without FFFS Cold fire</td>
</tr>
</tbody>
</table>

Typical results of the dimensioning are the required:
- thrust for systems to control the longitudinal flow
- extraction rates
- distances over which the extraction takes places

The detailed selection of equipment is conducted when other requirements to the design aspects have been clarified.

DESIGN

RAMS and Minimum operation requirements

In order to establish the required mitigation measures in case the smoke-management system (and all other safety relevant systems) does not perform according to the design criteria e.g. due to equipment failures, a RAMS analysis of the entire safety system should be carried out (RAMS = reliability, availability, maintainability and safety). The key question is to determine the required availability of the smoke-management system. For how long time may the smoke-management system have partial or complete failure?

If, however, it is assumed that the only viable mitigation measure is to close the underground facility, the minimum operation requirements of the smoke-management system need to be defined. In this case, the capacity of smoke-maximum system needs to correspond to its dimensioning at all times.
Equipment Selection and Design

Assuming that there are no viable mitigation measures available, equipment needs to be selected such that the underground facility is considered safe when part of the equipment is not operational. One aspect is to be able to conduct service on equipment without having to close the facility. Other reasons for adding equipment is to enable continuing the operation of the facility in case of equipment failure. Moreover, it has to be considered that a part of the equipment can be destroyed by the fire.

In case of a longitudinal smoke-management system, the procedure is firstly to establish the maximum possible locations for jet fans and anemometers.

At least two groups of anemometers per ventilation section need to be installed and they should be as far apart as possible. Each group has three single anemometers, and they have to be situated so that they are in fully developed flow that is not perturbed by the flow from jet fans, turbulence caused by signs etc.

A typical design philosophy is to assume that the group of jet fans near the fire will not be operated and might even be destroyed by the heat. Moreover, it is common practise to have an additional group of jet fans per ventilation sections. In this manner, it is permissible that one group of jet fans do not function or is in service.

Due to the delivery times of typically 3 months for jet fans and up to 9 months for axial fans, it should be considered to have spares on stock. However, in order to grease the bearings, the impeller of fans on stock need to be rotated several times per year.

For smoke-extraction systems, the design capacity has to be obtained even if one axial fan is not in operation.

If the smoke extraction is through opening of one or few remote-controlled dampers close to the fire, the consequences of incomplete opening of at least one damper has to be considered in the design.

FIRE DETECTION

The Austrian highway administrations (ASFiNAG) requested a comparative assessment of various detection methods for road-tunnel operation [23]. Following criteria were examined:

- Detection possibilities
- Reliability
- Fast response
- Maintainability
- Cost effectiveness

The highest value (4) was awarded for excellent performance.

Figure 8 shows the evaluation for following detection principles:

- Linear heat detector
- Smoke detector
- CO-detector for fire detection (see [24])
- Multiple gas detector
- Flame detector
- Video for automatic fire/smoke detection
Only the linear heat detector demonstrates a high reliability and the ability to detect many different types of fires, which is of paramount importance for fully automatic control systems. However, the response time is not very short. In order to obtain an adequately short response time, it is important to specify this in the procurement documents. The German recommendations for the configuration and operation of road tunnels EABT-80/100 [25] specifies that the linear heat detector has to detect a 5 MW fire within 1 minute at an air flow of 6 m/s (unidirectional tunnel). The detection accuracy has to be 50 m.

In order to have faster fire detection, Switzerland requires installation of smoke detectors. In Germany, it is required that the visibility sensors also are used for smoke detection. Newly developed routines for the analysis of the signals from smoke detectors have resulted in an increase in liability to such an extent that they can be used for automatic incident response [26].

Video detection of smoke is normally very fast but prone to false alarms. Therefore, they should not be used for automatic incident response.

OPERATION OF SMOKE-MANAGEMENT SYSTEMS

Smoke-management systems shall preferably operate fully automatic without any need of operator intervention. Nevertheless, manual intervention by the operator has to be envisaged. It shall be possible manually to activate the smoke-management system and even to change fire zone for which
it is activated. Moreover, the operator or the emergency services have to have the possibility to change the ventilation settings during intervention.

The principal aspects of the envisaged operation of the smoke-management system has to be known during the design stage.

REFERENCES

22. Altenburger, P., Riess, I. and Brandt, R., “Control of the longitudinal airflow in road tunnels
in case of fire”, VSS 1409, December 2012
24. Wehner, M. and Simon, I., “Smoke detection of low temperature fires in road tunnels using visibility sensors”, fifth international Conference for Safety in Road and Rail Tunnels, Marseille, France, 6-9 October 2003
25. EABT-80/100, “Empfehlung für die Ausstattung und den Betrieb von Straßentunneln mit eine Planungsgeschwindigkeit von 80 km/h oder 100 km/h”, FGSV, 2019
Through our international collaboration programmes with academia, industry, and the public sector, we ensure the competitiveness of the Swedish business community on an international level and contribute to a sustainable society. Our 2,800 employees support and promote all manner of innovative processes, and our roughly 100 testbeds and demonstration facilities are instrumental in developing the future-proofing of products, technologies, and services. We are owned by the Swedish State and work in collaboration with and on behalf of the private and public sectors and academia. Together, we develop services, products, technologies, processes and materials that contribute to a sustainable future and a competitive Swedish business community.